Periodic points of nonexpansive maps and nonlinear generalizations of the Perron-Frobenius theory

نویسندگان

  • Roger D. Nussbaum
  • Michael Scheutzow
  • Sjoerd M. Verduyn Lunel
چکیده

Let Kn = {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} and suppose that f : Kn → Kn is nonexpansive with respect to the l1-norm, ‖x‖1 = ∑n i=1 |xi|, and satisfies f(0) = 0. Let P3(n) denote the (finite) set of positive integers p such that there exists f as above and a periodic point ξ ∈ Kn of f of minimal period p. For each n ≥ 1 we use the concept of “admissible arrays on n symbols” to define a set of positive integers Q(n) which is determined solely by number theoretical and combinatorial constraints and whose computation reduces to a finite problem. In a separate paper the sets Q(n) have been explicitly determined for 1 ≤ n ≤ 50, and we provide this information in an appendix. In our main theorem (Theorem 3.1) we prove that P3(n) = Q(n) for all n ≥ 1. We also prove that the set Q(n) and the concept of admissible arrays are intimately connected to the set of periodic points of other classes of nonlinear maps, in particular to periodic points of maps g : Dg → Dg, where Dg ⊂ Rn is a lattice (or lower semilattice) and g is a lattice (or lower semilattice) homomorphism. Mathematics Subject Classification (1991). 06A07, 47H07, 47H09.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the block numerical range

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

Admissible Arrays and a Nonlinear Generalization of Perron-frobenius Theory

Let Kn ̄2x `2n :x i & 0 for 1% i% n ́ and suppose that f :Kn MNKn is nonexpansive with respect to the F " -norm and f(0) ̄ 0. It is known that for every x `Kn there exists a periodic point ξ ̄ ξ x `Kn (so f p(ξ ) ̄ ξ for some minimal positive integer p ̄ pξ) and f k(x) approaches 2 f j(ξ ) :0% j! p ́ as k approaches infinity. What can be said about P*(n), the set of positive integers p for which there...

متن کامل

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998